Multiple Solutions to Non-convex Variational Problems with Implications for Phase Transitions and Numerical Computation
نویسنده
چکیده
Non-convex variational/boundary-value problems are studied using a modified version of the Ericksen bar model in nonlinear elasticity. The strain-energy function is a general fourth-order polynomial in a suitable measure of strain that provides a convenient model for the study of, for example, phase transitions. On the basis of a canonical duality theory, the nonlinear differential equation for the non-convex, non-homogeneous variational problem, here with either mixed or Dirichlet boundary conditions, is converted into an algebraic equation, which can, in principle, be solved to obtain a complete set of solutions. It should be emphasized that one important outcome of the theory is the identification and characterization of the local energy extrema and the global energy minimizer. For the soft loading device criteria for the existence, uniqueness, smoothness and multiplicity of solutions are presented and discussed. The iterative finite-difference method (FDM) is used to illustrate the difficulty of capturing non-smooth solutions with traditional FDMs. The results illustrate the important fact that smooth analytic or numerical solutions of a nonlinear mixed boundary-value problem might not be minimizers of the associated potential variational problem. From a ‘dual’ perspective, the convergence (or non-convergence) of the FDM is explained and numerical examples are provided.
منابع مشابه
Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملA Numerical Investigation Of The Canonical Duality Method For Non-Convex Variational Problems
(ABSTRACT) This thesis represents a theoretical and numerical investigation of the canonical duality theory, which has been recently proposed as an alternative to the classic and direct methods for non-convex variational problems. These non-convex variational problems arise in a wide range of scientific and engineering applications, such as phase transitions, post-buckling of large deformed bea...
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملA numerical technique for solving a class of 2D variational problems using Legendre spectral method
An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage o...
متن کاملNumerical solution of variational problems via Haar wavelet quasilinearization technique
In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.
متن کامل